Warm-up Problems

Warm-up Problems
1. Solve the homogeneous DE
 $(y-x)dx + (x+y)dy = 0$ $(y-x)dx + (x+y)dy = 0$

2. Solve the homogeneous DE
 $(y-x)dx + (x+y)dy = 0$

2. Solve the Bernoulli equation
 $x^2 \frac{dy}{dx} + 2xy = 5y^4$ $x^2 \frac{dy}{dx} + 2xy = 5y^4$

Linear Models

Ex. The rate of growth of bacteria in a culture is
proportional to the population $P(t)$ of the bacteria af
thours. After 1 hour the population has increased h proportional to the population $P(t)$ of the bacteria after t hours. After 1 hour, the population has increased by dt = $k r$

dt = $k r$
 $\begin{array}{ccc} 0 & \text{if } k \neq 0 \\ \frac{1}{r} & \frac{1}{r} \frac{d}{r} & \frac{d}{r} \frac{d}{r} & \frac{d}{r} \\ \frac{d}{r} & \frac{d}{r} & \frac{d}{r} & \frac{d}{r} \frac{d}{r} \frac{d}{r} \\ \frac{d}{r} & \frac{d}{r} & \frac{d}{r} & \frac{d}{r} \frac{d}{r} \frac{d}{r} \frac{d}{r} \frac{d}{r} \frac{d}{r} & \frac{d}{r} \frac{d}{r} \frac{$ $\mathbf{P}(o) = 100$ $f(1) = 150$ $f'(i) = 300$ $P(1) = 100 e^{k-l} = 150$ $300 = 100(1.5)^{t}$ $3 = 1.5^{t}$ $f = \frac{3}{2}$
 $\frac{1}{2}$ $k = ln(1.5)$ $P = 100 e^{t \hat{\mu}(1.5)} = 100 e^{\hat{\mu}(1.5^t)}$ $\rho = De^{kt}$ 23 = t for 1.5 $t = \frac{h^{3}}{2!5}$ $P = 100 (1.5)^t$

 $\frac{Ex}{x}$. When a cake is removed from an oven, its temperature is 300 $^{\circ}$ F. Three minutes later, its temperature is 200 $^{\circ}$ F. Write an equation for the temperature if the room is 300ºF. Three minutes later, its temperature is 200ºF. Write an equation for the temperature if the room $1+(0)=300$ temperature is 70ºF.

Ex. A tank initially holds 300 gallons of brine, made up of
50 pounds of salt. A solution with a concentration of 2
pounds of salt per gallon is pumped in at a rate of 3 50 pounds of salt. A solution with a concentration of 2 pounds of salt per gallon is pumped in at a rate of 3 gallons per minute. While being stirred, fluid is being pumped out at the same rate. Find an equation for the $\frac{dA}{dt} = \frac{3 \cancel{gd}}{\cancel{m} \cdot \cancel{n}} \cdot \frac{2 \cancel{lb}}{\cancel{m} \cdot \cancel{n}} - \frac{3 \cancel{gd}}{\cancel{m} \cdot \cancel{n}} \cdot \frac{A \cancel{lb}}{\cancel{d} \cdot \cancel{d} \cdot \cancel{d}} - \frac{3 \cancel{gd}}{\cancel{m} \cdot \cancel{n}} \cdot \frac{A \cancel{lb}}{\cancel{d} \cdot \cancel{d} \cdot \cancel{d}} - \frac{4 \cancel{h}}{\cancel{d} \cdot \cancel{d} \cdot \cancel{d}} - \frac{3 \cancel{gd}}{\cancel{d} \cdot \cancel{d} \cdot \cancel{d}} - \frac{3 \cancel{gd$ $\frac{dA}{dt} = 6 - \frac{A}{100}$ $\frac{dA}{dt} + \frac{1}{100}A = 6$ $A = 600 - 550e^{-t/100}$ $\int \frac{d}{dt} \left[e^{\frac{1}{100}t} \cdot A \right] = \int 6 e^{\frac{1}{100}t}$
 $e^{\frac{1}{100}t} \cdot A = 600 e^{\frac{1}{100}t} + C$
 $A = 600 + C e^{-\frac{t}{100}}$ as $t\rightarrow\infty$, $A\rightarrow600$ |b.
200 gal 300 gal. $7^{16}/99$

Kirchhoff's Second Law (circuits):

chhoff's Second Law (circuits):

\n
$$
L\frac{di}{dt} + Ri = E(t)
$$
\n
$$
R\frac{dq}{dt} + \frac{1}{C}q = E(t)
$$
\n
$$
i(t) = \text{current}
$$
\n
$$
q(t) = \text{charge}
$$
\n
$$
E(t) = \text{voltage}
$$
\n
$$
L = \text{inductance}
$$
\n
$$
R = \text{resistance}
$$
\n
$$
C = \text{capacitance}
$$

Ex. A 12-volt battery is connected to a series circuit in
which inductance is $\frac{1}{2}$ henry and the resistance is 10
ohms. Determine the current *i* if the initial current is which inductance is $\frac{1}{2}$ henry and the resistance is 10 ohms. Determine the current *i* if the initial current is zero.

 $L \frac{di}{dt} + Ri = E$ $\frac{1}{2}$ di + 10 i = 12

$$
\dot{\lambda}(0) = \frac{C}{5} + C e^{0} = 0
$$
\n
$$
C = -\frac{C}{5}
$$
\n
$$
\dot{\lambda}(0) = 0
$$
\n
$$
C = -\frac{C}{5}
$$
\n
$$
\dot{\lambda}(0) = 0
$$

di

dt

(dt e²⁰¹ i) $\int 24e^{20t}$ $dA \left[e^{i\theta} \right]^{2} = \frac{1}{2}e^{i\theta} + C$
 $e^{i\theta} \cdot \vec{r} = \frac{1}{2}e^{i\theta} + C$