Second Order Linear DE's

An IVP would look like

Second Order Linear DE's
\nIVP would look like
\n
$$
a_2(x)y'' + a_1(x)y' + a_0(x)y = g(x)
$$

\n $y(x_0) = y_0, y'(x_0) = y_1$

Thm. Existence of a Unique Solution
Let a_0 , a_1 , a_2 , and $g(x)$ be continuous on an

Let a_0 , a_1 , a_2 , and $g(x)$ be continuous on an interval containing x_0 , and let $a_2(x) \neq 0$ for all x on an interval. Then a unique solution to the IVP exists on the interval.

 $(x) y'' + a_1(x) y' + a_0(x) y = g(x)$ Indary Valued Problem looks like
 $y(x)y'' + a_1(x)y' + a_0(x)y = g(x)$
 $(a) = y_0, y(b) = y_1$ $a_2(x)y'' + a_1(x)y' + a_0(x)y = g(x)$ $y(a) = y_0, y(b) = y_1$ A Boundary Valued Problem looks like

- \rightarrow Could be values of y' at one or both points
- \rightarrow Boundary valued problems do not have to have unique solutions
- \rightarrow The interval of definition would be [a,b]

Ex.
$$
y = c_1x^2 + c_2x^4 + 3
$$
 is a solution to
\n
$$
(x^2y'' - 5xy' + 8y = 24)
$$
 Find a particular solution that satisfies the boundary condition:

a)
$$
y(-1) = 0
$$
, $y(1) = 4$
\n $y(-1) = C_1 + C_2 + 3 = 0$
\n $y(1) = C_1 + C_2 + 3 = 4$
\n $0 = 4$
\n $0 = 6$

Ex. $y = c_1 x^2 + c_2 x^4 + 3$ is a solution to $x^2y'' - 5xy' + 8y = 24$. Find a particular $y = c_1x^2 + c_2x^4 + 3$ is a solution to
 $y'' - 5xy' + 8y = 24$. Find a particular

blution that satisfies the boundary solution that satisfies the boundary condition:

b)
$$
y(1) = 3, y(2) = 15
$$

\n $y(1) = c_1 + c_2 + 3 = 3$ $2e_2 - c_1$
\n $y(2) = 4c_1 + 16c_2 + 3 = 15$
\n $4c_1 - 16c_1 = 12$
\n $12c_1 = 12$
\n $c_2 = 1$
\n $c_1 = 1$

Ex. $y = c_1 x^2 + c_2 x^4 + 3$ is a solution to $x^2y'' - 5xy' + 8y = 24$. Find a particular $y = c_1x^2 + c_2x^4 + 3$ is a solution to
 $y'' - 5xy' + 8y = 24$. Find a particular

blution that satisfies the boundary solution that satisfies the boundary condition:

c) $y(0) = 3$, $y(1) = 0$

- The DE $a_2(x)$ is called <u>homogeneous</u> if $g(x) = g(x)$
is called <u>homogeneous</u> if $g(x) = 0$.
For a nonhomogenous equation, we can $a_2(x)y'' + a_1(x)y' + a_0(x)y = g(x)$
- \rightarrow For a nonhomogenous equation, we can find the associated homogeneous equation by replacing $g(x)$ with 0.

$$
\gamma^2 y'' - 5xy' + 8y = 22x0
$$

Thm. Superposition Principle – Homogeneous
Let v_1, v_2, \ldots, v_k be solutions to a

Let $y_1, y_2, ..., y_k$ be solutions to a homogeneous n^{th} order DE, then

$$
y = c_1 y_1 + c_2 y_2 + \ldots + c_k y_k
$$

- (where $c_1, c_2, ..., c_k$ are arbitrary constants) is also a solution.
- \rightarrow Note that $y = 0$ is always a solution to a homogeneous DE.

Ex. $y_1 = x^2$ and $y_2 = x^2 \ln x$ are solutions to $x^3y''' - 2xy' + 4y = 0.$ $y_1 = x^2$ and $y_2 = x^2 \ln x$ are so
 $y''' - 2xy' + 4y = 0.$

(

$$
y = C_1 x^2 + C_2 x^2 A_7 + C_3 ()
$$

A set of functions $f_1, f_2, ..., f_n$ is <u>linearly</u> set of functions $f_1, f_2, ..., f_n$ is <u>linearly</u>
dependent if there exist constants
 $c_1, c_2, ..., c_n$ (not all zero) such that c_1, c_2, \ldots, c_n (not all zero) such that

$$
c_1 f_1 + c_2 f_2 + \dots + c_n f_n = 0
$$

- \rightarrow The set is linearly independent if $c_1 = c_2 = \ldots = c_n = 0$ is the only solution.
- \rightarrow When there are only 2 functions, they are linearly dependent iff one is a constant multiple of the other.

Ex. Show that $f_1 = \cos^2 x$, $f_2 = \sin^2 x$
and $f_4 = \sec^2 x$ are linearly depen $x, f_2 = \sin^2 x, f_3 = \tan^2 x,$ and f_4 = sec²x are linearly dependent.

Suppose $f_1, f_2, ..., f_n$ possess at possess at least $n-1$
terminant derivatives. The determinant

is called the Wronskian.

Thm. Let $y_1, y_2, ..., y_n$ be solution
homogeneous n^{th} order DF $, y_2, ..., y_n$ be solutions of a homogeneous n^{th} order DE, defined on an interval. The set of solutions is linearly independent if $W(y_1, y_2, \ldots, y_n) \neq 0$ for al ions of a
defined on an
s is linearly
 $)\neq 0$ for all x on the interval.

Any set $y_1, y_2, ..., y_n$ of *n* linearly independent solutions of a homogeneous nth order DE is called a <u>fundamental set of</u> solutions. This set will always exist.

 \rightarrow To show that solutions form a fundamental set, you must show that they satisfy the equation and that they are independent. solutions. This set will always exist.
 \rightarrow To show that solutions form a fundamental

set, you must show that they satisfy the

equation and that they are independent.
 \rightarrow The <u>general solution</u> to the DE is
 $y = c_1y_$

The general solution to the DE is
 $y = c_1 y_1 + c_2 y_2 + ... + c_n y_n$

 $y_1 = e^{3x}$ and $y_2 = e^{-3x}$ are so
 $y'' - 9y = 0$. Ex. $y_1 = e^{3x}$ and $y_2 = e^{-3x}$ are solutions to 1) Solutions Solutions
 $y_1 = e^{3x}$
 $y_1' = 3e^{3x}$
 $y_1'' = 3e^{3x}$
 $y_1'' = 9e^{3x}$ $y_2 \neq C y_1$ e^{-3x} $\neq Ce^{3x}$ $e^{-6x} \neq C$ $y'' - 9y = 0$ $y'' - 9y = 0$ $9e^{-3x}-9e^{-3x}=0$ $9e^{3x}-9e^{3x}=0$ $y=C_1e^{3x}+C_2e^{-3x}$

Ex. y¹ = e x , y² = e²^x , and y³ = e³^x are solutions to y – 6y + 11y – 6^y = 0.

Any function y_p that is free of parameters and satisfies a non–homogeneous DE is called a particular solution.

Ex. $y = 3$ is a particular solution of $y'' + 9y = 27$.

Homogeneous
\n
$$
(*) \qquad a_n(x)y^{(n)} + ... + a_2(x)y'' + a_1(x)y' + a_0(x)y = 0
$$

$$
\frac{\text{Non-Homogeneous}}{(**)} a_n(x) y^{(n)} + ... + a_2(x) y'' + a_1(x) y' + a_0(x) y = g(x)
$$

If $y_1, y_2, ..., y_k$ are solutions of (*) and y_p is a solution to $(**)$, then

$$
y = c_1 y_1 + c_2 y_2 + \ldots + c_k y_k + y_p
$$

is a solution to (**).

Thm. Let $y_1, y_2, ..., y_n$ be a fi
solutions to (*), and let y_p $, y_2, ..., y_n$ be a fundamental set of solutions to $(*),$ and let y_p be a solution to $(**)$, then

$$
y = c_1 y_1 + c_2 y_2 + \dots + c_n y_n + y_p
$$

is the general solution to (**).

- $y = c_1 y_1 + c_2 y_2 + ... + c_n y_n$ is called the (**), then
 $y = c_1y_1 + c_2y_2 + \dots + c_ny_n + y_p$

is the general solution to (**).
 $= c_1y_1 + c_2y_2 + \dots + c_ny_n$ is called the

complementary function of (**), written y_c .

So the general solution can be written .
- \rightarrow So the general solution can be written $y_c + y_p$. .

Ex. Find the general solution to
 $y''' - 6y'' + 11y' - 6y = 3$. $\frac{y}{y'' - 6y'' + 11y' - 6y} = 3.$
 $y''' - 6y'' + 11y' - 6y = 3.$ $y_c = C_1 e^{x} + C_2 e^{2x} + C_3 e^{3x}$

Thm. Superposition Principle – Nonhomogeneous
\n
$$
a_n y^{(n)} + ... + a_2 y'' + a_1 y' + a_0 y = g_1(x) \leftarrow y_{p_1}
$$
\n
$$
a_n y^{(n)} + ... + a_2 y'' + a_1 y' + a_0 y = g_2(x) \leftarrow y_{p_2}
$$
\nparticular
\n
$$
\vdots
$$
\n
$$
a_n y^{(n)} + ... + a_2 y'' + a_1 y' + a_0 y = g_k(x) \leftarrow y_{p_k}
$$
\n
$$
\text{theo } y_{p} = y_{p_1} + y_{p_2} + ... + y_{p_k} \text{ is a particular solution of}
$$

$$
a_n y^{(n)} + \ldots + a_2 y'' + a_1 y' + a_0 y = g_k(x) \leftarrow y_{p_k}
$$

then $y_p = y_p + y_p + ... + y_p$ is a particular solution of $y_p = y_{p_1} + y_{p_2} + ... + y_{p_k}$ (n) α $2y + a_1y + a_0y = g_1 + g_2$ $a_n y^{(n)} + ... + a_2 y'' + a_1 y' + a_0 y = g_1 + g_2 + ... + g_k$

Ex. $\overline{y}_{p_1} = -4x^2$ is a solution to $y'' - 3y' + 4y = -16x^2 + 24x - 8$ 1 $y_{p_2} = e^{2x}$ is a solution to $y'' - 3y' + 4y = 2e^{2x}$ ^{2x} is a solution to $y'' - 3y' + 4y = 2e^{2x}$ 2 $y_{p_3} = xe^x$ is a solution to $y'' - 3y' + 4y = 2xe^x - e^x$ $y'' - 3y' + 4y = 2xe^{x} - e^{x}$ $y'' - 3y' + 4y = (-16x^2 + 24x - 8) + (2e^{2x}) + (2xe^{x} - e^{x})$ $y_{\rho} = -\frac{1}{4}x^2 + e^{2x} + xe^{x}$ $\sqrt{1^{1}-3y^{1}+4y}=2(-16x^{2}+24x-8)+\frac{1}{3}(2e^{2x})-(2xe^{x}-e^{x})$ $y = \frac{1}{\gamma \rho} = 2(-4x^2) + \frac{1}{3}(e^{2x}) - (xe^{x})$