Warm-up Problems Consider the functions $y_1 = \sin 2x$ and $y_2 = \cos 2x$, and the DE y'' + 4y = 0.

- 1) Show that y_1 and y_2 form a fundamental set of solutions.
- 2) Write the general solution.
- 3) Find a member of the family that satisfies the boundary conditions y(0) = 2 and $y'(\frac{\pi}{2}) = 0$, if possible.

Reduction of Order

Suppose you know that y_1 is a solution to $a_2(x)y'' + a_1(x)y' + a_0(x)y = 0$, and you want to find the other solution y_2 to form the fundamental set of solutions.

Because they are linearly independent, $y_2 \neq cy_1$ for constant *c*.

 $\rightarrow y_2 = u(x)y_1$ for some function u(x).

 \rightarrow We can make this substitution to find y_2 .

<u>Ex.</u> If $y_1 = e^x$ is a solution of y'' - y = 0, use reduction of order to find a second solution.

For the DE y'' + P(x)y' + Q(x)y = 0, $y_2 = y_1 \int \frac{e^{-\int P(x)dx}}{(y_1)^2} dx$

On the homework, do problems 1–3 without the formula.

<u>Ex.</u> If $y_1 = x^2$ is a solution of $x^{2}y'' - 3xy' + 4y = 0, \text{ use frequencies} reduction of order for the to find a second solution.$ $y_{2} = \chi^{2} \left(\frac{e^{-\int \frac{-3}{\chi} dx}}{(\chi^{2})^{2}} dx = \chi^{2} \right) \frac{3hx}{\chi^{4}} dx = \chi^{2} \int \frac{\chi^{3}}{\chi^{4}} dx$ $= \chi^{2} \left\{ \frac{1}{x} dx = \left[\chi^{2} h \right] \right\}$

Ex. If $y_1 = e^x$ is a solution of y'' - 4y' + 3y = 0, find the general solution to y'' - 4y' + 3y = x. Homog. y"-4y'+3y=0 $\gamma_2 = e^{\chi} \int \frac{e^{-\int -4dx}}{(e^{\chi})^2} dx = e^{\chi} \int \frac{e^{4\chi}}{e^{2\chi}} dx = e^{\chi} \int e^{2\chi} dx = e^{\chi} \left(\frac{1}{2}e^{2\chi}\right)$ \Rightarrow y = e^{3x} $y_c = C_1 e^{x} + C_2 e^{3x}$ Non-homog. y"-4y'+3y=x $\rightarrow 0 - 4(A) + 3(A \times + B) = \times$ $y_p = A x + B$ $3A \times + (-4A + 3B) = X$ Yp'=A -4A+3B=0 $-\frac{4}{3}+3B=0$ 3A = | Y#"=0 3B= - - B= -A= - $\gamma = C_1 e^{x} + C_2 e^{3x} + \frac{1}{3}x + \frac{4}{9}$