Cauchy–Euler Equation

where $a_0, a_1, a_2, ..., a_n$ are constant, is called Cauchy–Euler Equation
 $x^n y^{(n)} + ... + a_2 x^2 y'' + a_1 xy' + a_0 y = g(x)$

here $a_0, a_1, a_2, ..., a_n$ are constant, is call

a <u>Cauchy–Euler</u> equation.

Note that the lead coefficient equals 0 a $a^{(n)} + ... + a_2 x^2 y'' + a_1 xy' + a_0 y = g(x)$ $_{2}x$ y + $a_{1}xy$ + $a_{0}y$ $a_n x^n y^{(n)} + ... + a_2 x^2 y'' + a_1 xy' + a_0 y = g(x)$

 \rightarrow Note that the lead coefficient equals 0 at $x = 0$, so we will restrict the interval to $(0, \infty)$ to ensure a unique solution.

Start with
$$
ax^2y'' + bxy' + cy = 0
$$
, we are
going to assume that a solution is $y = x^m$

$$
ax^2 \cdot m(m-1)x^{m-1} + b x \cdot m x^{m-1} + C x^m = 0
$$

$$
ax^2 \cdot m(m-1)x^{m-1} + b x \cdot m x^{m-1} + C x^m = 0
$$

$$
x^m \left[a_m(m-1) + b_m + C\right] = 0
$$

$$
a_m(m-1) + b_m + C = 0
$$

This is our auxiliary equation.

3 Cases

If distinct roots m_1 and $m_2 \rightarrow y = c_1 x^{m_1} + c_2 x^{m_2}$ If repeating root $m \to y = c_1 x^m + c_2 x^m \ln x$ If complex conjugate roots $\alpha \pm \beta i \rightarrow$ $C_1 x + C_2 x$ $y = c_1 x^{m_1} + c_2 x^{m_2}$ $y = x^{\alpha} \left[c_1 \cos(\beta \ln x) + c_2 \sin(\beta \ln x) \right]$

Ex. Solve
$$
x^2y'' - 2xy' - 4y = 0
$$

\n
$$
m(m-1) - 2m - 4 = 0
$$
\n
$$
m^2 - 3m - 4 = 0
$$
\n
$$
(m-4)(m+1) = 0
$$
\n
$$
m = 4, -1
$$

$$
y = C_1 x^4 + C_2 x^{-1}
$$

Ex. Solve $4x^2y'' + 17y = 0$, $y(1) = -1$, $y'(1) = -\frac{1}{2}$
 $\psi_m(m-1) + \frac{1}{7} = 0$
 $y = \frac{4 \pm \sqrt{16-4.417}}{2.4} = \frac{4 \pm \sqrt{16-272}}{8} = \frac{4 \pm \sqrt{162}}{8} = \frac{4 \pm 162}{8}$ $y'(1) = -\frac{1}{2}$ $=\frac{1}{2}\pm 2i$ $4m^{2}-4m+17=0$ $\sqrt{1/2}$ (c, cool $2hx) + C_2$ and $(2hx)$) $y(1) = 1(C_1 + C_2 \cdot \sigma) = -1$ $\rightarrow C_1 = -1$ $y(1) = 1(C, 1 + C_2 \cdot 0)$
 $y'(1) = 1(C_1 + C_2 \cdot 0)$
 $y'' = x^{1/2}[-C_1 \sin(2kx) \cdot \frac{2}{x} + C_2 \cos(2kx) \cdot \frac{2}{x}] + \frac{1}{2}x^{-1/2}[C_1 \cos(2kx) + C_2 \sin(2kx)]$ = x¹[-C, and con ii) x
y'(1) = 1(-C, 0 +C₂·1·2) + $\frac{1}{2}((-1)\cdot 1 + C_2 \cdot 0) = -\frac{1}{2}$ $2C_2 - \frac{1}{2} = -\frac{1}{2}$ $\rightarrow 2C_2 = 0$ $C_{1} = 0$ $V = -\chi^{\frac{1}{2}}cos(2hx)$

$$
\underline{Ex.} \text{ Solve } x^{3}y''' + 5x^{2}y'' + 7xy' + 8y = 0
$$
\n
$$
\lim_{m(m-1)(m-2)} + 5m(m-1) + 7m + 8 = 0
$$
\n
$$
m^{3} - 3m^{2} + 2m + 5m^{2} - 5m + 7m + 8 = 0
$$
\n
$$
m^{3} + 2m^{2} + 4m + 8 = 0
$$
\n
$$
m^{2}(m+2) + 4(m+2) = 0
$$
\n
$$
(m+2)(m^{2}+4) = 0
$$
\n
$$
m = -2, \pm 2i
$$

$$
y = C_1 x^{-2} + C_2 cos(2hx) + C_3 sin(2hx)
$$

$$
\frac{Ex. Solve x^{2}y'' - 3xy' + 3y = 2x^{4}e^{x} + 3y^{2} + \frac{3}{x}y + \frac{3}{x}y = 2x^{2}e^{x}
$$

\n $x^{2}y'' - 3xy' + 3y = 0$
\n $x^{2}y'' - 3xy' + 3y = 0$
\n $x^{2}y'' + 3y = 2x^{4}e^{x}$
\n $x^{2}y'' + 3y = 2x^{4}e^{x}$
\n $x^{2}y'' + 3y = 2x^{4}e^{x}$
\n $x^{2}y'' + 3y = 2x^{4}e^{x}$

It's possible to reduce a Cauchy–Euler equation into a linear equation with constant coefficients using the substitution

$$
x=e^t
$$

<u>Ex.</u> Solve $x^2y'' - xy' + y = \ln x$