Warm–up Problems

A force of 2 pounds stretches a spring 1 foot. A mass weighing 8 pounds is attached to the end. The system lies on a table that imparts a frictional force numerically equal to 1.5 times the instantaneous velocity. Initially, **Warm—up Problems**
A force of 2 pounds stretches a spring 1 foot. A mass
weighing 8 pounds is attached to the end. The system
lies on a table that imparts a frictional force numerically
equal to 1.5 times the instantaneous position and released from rest. Find the equation of motion.

Power Series Review

To solve linear DE's with variable coefficients, we'll be using power series

 \rightarrow First, let's review

Power Series centered at $x = a$:

es centered at
$$
x = a
$$
:
\n
$$
f(x) = \sum_{n=0}^{\infty} c_n (x - a)^n
$$
\nfunction and this may be as

 \rightarrow This is a function, and this may be as simple as the function gets

 \rightarrow For simplicity, we will usually use $a = 0$ $1-3x+\frac{2}{5}x^{2}-\frac{1}{17}x^{3}-7x^{4}+\pi x^{5}+...$

Some familiar functions can be represented as power series:

$$
e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \qquad \sin x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{(2n+1)!}
$$

$$
\cos x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n}}{(2n)!}
$$

These are called analytic functions because they can be represented as power series, and are useful to remember.

- A power series is convergent at a value of x if the infinite sum is equal to a finite number when evaluated at x.
- The interval of convergence is the interval of x values that make the series converge. The radius of convergence is the distance away from $x = a$ that we can go to get convergence.

Radius =
$$
\infty \rightarrow
$$
 Interval = R

Radius = $0 \rightarrow$ Interval = just the point *a*

The interval will be the domain of our function.

Ratio Test

Consider the series Σb_n Ratio Test
Consider the series Σb_n
• converges absolutely if $(\lim_{n\to\infty}\left|\frac{b_n}{b_n}\right|)$ Ratio Test
Consider the series Σb_n
• converges **its stately** if
• diverges if $\lim_{n\to\infty} \left| \frac{b_{n+1}}{b_n} \right| > 1$ 1 $\lim_{n \to \infty} \left| \frac{b_{n+1}}{n} \right| < 1$ $n\rightarrow\infty$ n $b_{\scriptscriptstyle n}^{}$ $b_{\scriptscriptstyle n}^{\vphantom{\dagger}}$ $+$ \lt 1 $\lim_{n \to \infty} \left| \frac{D_{n+1}}{n} \right| > 1$ \mathfrak{n} n $b_{\scriptscriptstyle n}^{\vphantom{\dagger}}$ $b_{\scriptscriptstyle n}^{\vphantom{\dagger}}$ $+$ $\rightarrow \infty$ $>$

If
$$
y = \sum_{n=0}^{\infty} c_n x^n
$$
, then
\n $y' = \sum_{n=1}^{\infty} c_n nx^{n-1}$
\n $y'' = \sum_{n=2}^{\infty} c_n n(n-1) x^{n-2}$

We can add, subtract, multiply, and divide series term-by-term.

Ex. Express x^2e^x as a power series. $e^{x} = | + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + ... = \sum_{n} \frac{x^{n}}{n!}$

$$
\frac{\text{Ex. Express } e^{x} \sin x \text{ as a power series.}}{\left(\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\right) \left(\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{(2n+1)!}\right)}
$$
\n
$$
(1 + x + \frac{1}{2}x^{2} + \frac{1}{6}x^{3} + \frac{1}{24}x^{4} + ...)(x - \frac{1}{6}x^{3} + \frac{1}{120}x^{5} + ...)
$$
\n
$$
x(1) + x^{2}(1) + x^{3}(-\frac{1}{6} + \frac{1}{2}) + x^{4}(-\frac{1}{6} + \frac{1}{6}) + x^{5}(\frac{1}{120} - \frac{1}{12} + \frac{1}{24}) + ...
$$
\n
$$
x + x^{2} + \frac{1}{3}x^{3} - \frac{1}{30}x^{5} + ...
$$

Ex. Let $y = \sum c_n x^n$, express $y'' + xy$ as a power series involving x^k . $\sum_{y'= \sum_{n=1}^{\infty} C_n n x^{-1}}$
 $\sum_{y''= \sum_{n=2}^{\infty} C_n n (n^{-1}) x^{n-1}}$
 $\sum_{n=2}^{\infty} C_n n (n^{-1}) x^{n-2} + x \sum_{n=0}^{\infty} C_n x^{n}$
 $\sum_{n=0}^{\infty} C_n n (n^{-1}) x^{n-2} + \sum_{n=0}^{\infty} C_n x^{n+1}$ $h = 0$ $k = n+1$ $k = n - 2$ $h = k + l$ $\sum_{k=0}^{\infty} c_{k+2} (k+2)(k+1) x^{k} + \sum_{k=1}^{\infty} c_{k-1} x^{k}$ $\frac{1}{2} \cdot 1 \cdot x^{\circ} + \sum_{k=1}^{n} x^{k} [C_{k+1}(k+1)(k+1) + C_{k-1}]$ $k = 0$