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then the system can be written X' ZA:J-(} F

- If F =0, the system 1s homogeneous

—> Finding a solution means finding X.



Ex. Write the system in matrix form.
X' =6x+y+z+t
Yy =8x+T7y—z+10¢
Z'=2x+9y—z+6¢
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Ex. Verify that X, = ( 1) ‘and X, ( je“ are
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solutions to X' = X
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An IVP means that we are given X (zo) —




Superposition still applies

-2 If X,, X,, ..., X are solutions, then so is
X=CX,+CX, +..+CX,

Linear independence still applies

-2 X, X,, ..., X, are linearly independent if there are no
non-zero coefficients such that

CX,+CX,+..+CX =0



Thm. X,, X;, ..., X, are linearly independent 1ff
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Ex. Show that X, =

linearly independ
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Any set of n linearly independent solutions of the linear
system of n equations 1s a fundamental set, and their
linear combination 1s the general solution to the
system.
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2> X =¢ e +c, s e 1s the general solution to
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X' = X
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For non-homogeneous systems:
X_. = solution to homogeneous = C X, + C,X, +...+ C X,
X, = particular solution to non-homogenous

X=X, + X, 1s the general solution to non-homogenous
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Ex. X = . is a solution to X' =
5t +




