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If

then the system can be written X  = AX + F

 If F = 0, the system is homogeneous

 Finding a solution means finding X.
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Ex. Write the system in matrix form.
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Ex. Verify that                        and                      are 

solutions to
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An IVP means that we are given  
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Superposition still applies

 If X1, X2, …, Xn are solutions, then so is

X = C1X1 + C2X2 +…+ CnXn

Linear independence still applies

 X1, X2, …, Xn are linearly independent if there are no 
non-zero coefficients such that

C1X1 + C2X2 +…+ CnXn = 0



Thm. X1, X2, …, Xn are linearly independent iff
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Ex. Show that                        and                     are 

linearly independent.
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Any set of n linearly independent solutions of the linear 
system of n equations is a fundamental set, and their 
linear combination is the general solution to the 
system.
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For non-homogeneous systems:

Xc = solution to homogeneous = C1X1 + C2X2 +…+ CnXn

Xp = particular solution to non-homogenous

X = Xc + Xp is the general solution to non-homogenous



Ex. is a solution to
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