$700 \bullet (desired \%) = total points needed$

Total points needed - 4 undropped exams <u>- quiz percent</u> Points needed on final (out of 200)

Review for the Final

- Verifying a solution to a DE
- Verifying linear independence (Wronskian)
- Slope field

• Using critical points to sketch phase portraits and solution curves

<u>Ex.</u> $\frac{dy}{dx} = 4 - y^2$

• Separable equations <u>Ex.</u> $\frac{dy}{dx} = y(x+1)$

First order linear DE: y' + P(x)y = f(x)
Integrating factor e^{\$\int_{P(x)dx}\$}

$$\underline{\mathrm{Ex.}}\left(x^2-9\right)y'+xy=0$$

- Exact equations
 - Verify, then solve

$$\underline{\text{Ex.}} \ 2xydx + \left(x^2 - 1\right)dy = 0$$

- Bernoulli equation: y' + P(x)y = f(x)yⁿ
 Substitute u = y¹⁻ⁿ
- Euler's Method for numerical approximation
- Fundamental Set, General Solution
 - An *n*th order DE has *n* linearly independent solutions

• Reduction of order for
$$y'' + P(x)y' + Q(x)y = 0$$

• $y_2 = y_1 \int \frac{e^{-\int P(x)dx}}{(y_1)^2} dx$

• Homogeneous DE with constant coefficients

$$\underline{\operatorname{Ex.}} y'' - 6y' - 7y = 0$$

• Non-homogeneous using undetermined coefficients

 $\underline{\text{Ex. }} y'' - 6y' - 7y = 4e^{-x}$

- Non-homog. using variation of parameters
- $\underline{\text{Ex.}} \, 4y'' + 36y = \csc 3x$

Cauchy-Euler: ax²y" + bxy' + cy = 0
am(m - 1) + bm + c = 0
<u>Ex.</u> x²y" - 2xy' - 4y = 0

- Applications
 - Writing a DE from a word problem
 - Brine!
 - Exponential Growth and Decay
 - Newton's Law of Cooling and Warming
 - Circuit problems
 - Motion problems
 - Spring problems

- Finding a transform
- Finding an inverse transform
- Using to solve a DE

<u>Ex.</u> $y'' - 3y' + 2y = e^{-4t}$, y(0) = 1, y'(0) = 5

- Matrices and Eigenvalues
- Solving linear systems

If you would like your final exam mailed to you, please bring a self addressed, stamped envelope with you to the final.