p. 428: 10-17, 32, 34, 40-41, 43-53 odd, 58-62, 64-65, 67-68

10. (a)
$$\int_0^{10} f(x)dx \approx R_5 = [f(2) + f(4) + f(6) + f(8) + f(10)] \Delta x$$

= $[-1 + 0 + (-2) + 2 + 4](2) = 3(2) = 6$

(b)
$$\int_0^{10} f(x)dx \approx L_5 = [f(0) + f(2) + f(4) + f(6) + f(8)] \Delta x$$

= $[3 + (-1) + 0 + (-2) + 2](2) = 2(2) = 4$

(c)
$$\int_0^{10} f(x)dx \approx M_5 = [f(1) + f(3) + f(5) + f(7) + f(9)] \Delta x$$

= $[0 + (-1) + (-1) + 0 + 3](2) = 1(2) = 2$

11. (a)
$$\int_{-2}^{4} g(x)dx \approx R_6 = \left[g(-1) + g(0) + g(1) + g(2) + g(3) + g(4)\right] \Delta x$$

= $\left[-\frac{3}{2} + 0 + \frac{3}{2} + \frac{1}{2} + (-1) + \frac{1}{2}\right](1) = 0$

(b)
$$\int_{-2}^{4} g(x)dx \approx L_6 = [g(-2) + g(-1) + g(0) + g(1) + g(2) + g(3)] \Delta x$$

= $[0 + (-\frac{3}{2}) + 0 + \frac{3}{2} + \frac{1}{2} + (-1)](1) = -\frac{1}{2}$

(c)
$$\int_{-2}^{4} g(x)dx \approx M_6 = \left[g(-\frac{3}{2}) + g(-\frac{1}{2}) + g(\frac{1}{2}) + g(\frac{3}{2}) + g(\frac{5}{2}) + g(\frac{7}{2})\right] \Delta x$$

= $\left[-1 + (-1) + 1 + 1 + 0 + (-\frac{1}{2})\right](1) = -\frac{1}{2}$

12. Since f is increasing, $L_5 \leq \int_{10}^{30} f(x) dx \leq R_5$.

Lower estimate =
$$L_5 = \sum_{i=1}^{5} f(x_{i-1}) \Delta x = 4 [f(10) + f(14) + f(18) + f(22) + f(26)]$$

= $4 [-12 + (-6) + (-2) + 1 + 3] = 4(-16) = -64$

Upper estimate =
$$R_5 = \sum_{i=1}^{5} f(x_i) \Delta x = 4 [f(14) + f(18) + f(22) + f(26) + f(30)]$$

= $4 [-6 + (-2) + 1 + 3 + 8] = 4(4) = 16$

13. (a) Using the right endpoints to approximate $\int_{2}^{9} f(x)dx$, we have

$$\sum_{i=1}^{3} f(x_i) \Delta x = 2[f(5) + f(7) + f(9)] = 2(-0.6 + 0.9 + 1.8) = 4.2$$

Since f is increasing, using right endpoints gives us an overestimate.

(b) Using the left endpoints to approximate $\int_{3}^{9} f(x)dx$, we have

$$\sum_{i=1}^{3} f(x_{i-1}) \Delta x = 2 [f(3) + f(5) + f(7)] = 2(-3.4 - 0.6 + 0.9) = -6.2$$

Since f is increasing, using left endpoints gives us an underestimate.

(c) Using the midpoint of each interval to approximate $\int_{3}^{9} f(x)dx$, we have

$$\sum_{i=1}^{3} f(\overline{x_i}) \Delta x = 2[f(4) + f(8) + f(8)] = 2(-2.1 + 0.3 + 1.4) = -0.8$$

We cannot say anything about the midpoint estimate compared to the exact value of the integral.

14. $\Delta x = (8-0)/4 = 2$, so the endpoints are 0, 2, 4, 6, and 8, and the midpoints are 1, 3, 5, and 7. The Midpoint Rule gives

$$\int_0^8 \sin \sqrt{x} dx \approx \sum_{i=1}^4 f(\overline{x}_i) \Delta x = 2 \left(\sin \sqrt{1} + \sin \sqrt{3} + \sin \sqrt{5} + \sin \sqrt{7} \right) \approx 2(3.0910) = 6.1820.$$

15. $\Delta x = (1-0)/5 = \frac{1}{5}$, so the endpoints are $0, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}$ and 1, and the midpoints are $\frac{1}{10}, \frac{3}{10}, \frac{5}{10}, \frac{7}{10}$, and $\frac{9}{10}$. The Midpoint Rule gives

$$\int_0^1 \sqrt{x^3 + 1} dx \approx \sum_{i=1}^5 f(\overline{x}_i) \Delta x = \frac{1}{5} \left(\sqrt{\left(\frac{1}{10}\right)^3 + 1} + \sqrt{\left(\frac{3}{10}\right)^3 + 1} + \sqrt{\left(\frac{5}{10}\right)^3 + 1} + \sqrt{\left(\frac{7}{10}\right)^3 + 1} + \sqrt{\left(\frac{9}{10}\right)^3 + 1} \right) \approx 1.1097.$$

16. $\Delta x = (2-0)/5 = \frac{2}{5}$, so the endpoints are $0, \frac{2}{5}, \frac{4}{5}, \frac{6}{5}, \frac{8}{5}$ and 2, and the midpoints are $\frac{1}{5}, \frac{3}{5}, \frac{5}{5}, \frac{7}{5}$ and $\frac{9}{5}$. The Midpoint Rule gives

$$\int_0^2 \frac{x}{x+1} dx \approx \sum_{i=1}^5 f(\overline{x}_i) \Delta x = \frac{2}{5} \left(\frac{\frac{1}{5}}{\frac{1}{5}+1} + \frac{\frac{3}{5}}{\frac{3}{5}+1} + \frac{1}{1+1} + \frac{\frac{7}{5}}{\frac{7}{5}+1} + \frac{\frac{9}{5}}{\frac{9}{5}+1} \right) = \frac{2}{5} \left(\frac{127}{56} \right) = \frac{127}{140} \approx 0.9071.$$

- 17. $\Delta x = (\pi 0)/4 = \frac{\pi}{4}$; the endpoints are $0, \frac{\pi}{4}, \frac{2\pi}{4}, \frac{3\pi}{4}$ and $\frac{4\pi}{4}$, and the midpoints are $\frac{\pi}{8}, \frac{3\pi}{8}, \frac{5\pi}{8}$, and $\frac{7\pi}{8}$. The Midpoint Rule gives $\int_0^{\pi} x \sin^2 x dx \approx \sum_{i=1}^{\pi} f(\overline{x}_i) \Delta x = \frac{\pi}{4} \left(\frac{\pi}{8} \sin^2 \frac{\pi}{8} + \frac{3\pi}{8} \sin^2 \frac{3\pi}{8} + \frac{5\pi}{8} \sin^2 \frac{7\pi}{8} \right) \approx 2.4674$.
- 32. Let f(x) = 2x + 1 on [-1,0]. Then $\int_{-1}^{0} (2x+1)dx$ is equal to sum of the areas of the two triangles shown. The triangles have equal area, but one is above the *x*-axis, and the other is below. Therefore, the integral is equal to zero. This is choice (**D**). The other 3 choices all depict represent areas entirely above the *x*-axis.

34. Graph the line and use the area of the trapezoid:

$$\int_{a}^{b} x dx = \frac{1}{2}(a+b)(b-a) = \frac{1}{2}(b^{2}-a^{2})$$

- 40. (a) Think of $\int_0^2 f(x) dx$ as the area of a trapezoid with bases 1 and 3 and height 2. The area of a trapezoid is $A = \frac{1}{2}(b+B)h$, so $\int_0^2 f(x) dx = \frac{1}{2}(1+3)2 = 4$.
 - (b) $\int_0^5 f(x) dx = \int_0^2 f(x) dx + \int_2^3 f(x) dx + \int_3^5 f(x) dx$ trapezoid rectangle triangle $= \frac{1}{2}(1+3)2 + 3 \cdot 1 + \frac{1}{2} \cdot 2 \cdot 3 = 4+3+3=10$
 - (c) $\int_{5}^{7} f(x) dx$ is the negative of the area of the triangle with base 2 and height 3.

$$\int_{5}^{7} f(x) dx = -\frac{1}{2} \cdot 2 \cdot 3 = -3$$

(d) $\int_{7}^{9} f(x) dx$ is the negative of the area of a trapezoid with bases 3 and 2 and height 2, so it equals $-\frac{1}{2}(b+B)h = -\frac{1}{2}(3+2)2 = -5$.

Thus,
$$\int_0^9 f(x) dx = \int_0^5 f(x) dx + \int_5^7 f(x) dx + \int_7^9 f(x) dx = 10 + (-3) + (-5) = 2.$$

- 41. (a) $\int_0^2 g(x)dx = \frac{1}{2} \cdot 4 \cdot 2 = 4$ [area of a triangle]
 - (b) $\int_{2}^{6} g(x)dx = -\frac{1}{2} \cdot \pi \cdot 2^{2} = -2\pi$ [negative of the area of a semicircle]
 - (c) $\int_6^7 g(x)dx = \frac{1}{2} \cdot 1 \cdot 1 = \frac{1}{2}$ [area of a triangle]

$$\int_0^7 g(x)dx = \int_0^2 g(x)dx + \int_2^6 g(x)dx + \int_6^7 g(x)dx = \frac{1}{2}4 - 2\pi + \frac{1}{2} = 4.5 - 2\pi$$

43. $\int_0^9 \left(\frac{1}{3}x - 2\right) dx$ can be interpreted as the difference of the areas of the two shaded triangles; that is,

$$-\frac{1}{2}(6)(2) + \frac{1}{2}(3)(1) = -6 + \frac{3}{2} = -\frac{9}{2}$$
.

45. $\int_{-3}^{3} \sqrt{9 - x^2} dx$ can be interpreted as the area under the graph of $f(x) = \sqrt{9 - x^2}$ between x = -3 and x = 3. This is equal to a semi-circle of radius 3; that is $\frac{1}{2}\pi \cdot 3^2 = \frac{9}{2}\pi$

47. $\int_{-5}^{5} \left(x - \sqrt{25 - x^2}\right) dx = \int_{-5}^{5} x \ dx - \int_{-5}^{5} \sqrt{25 - x^2} \ dx$. By symmetry, the value of the first integral is 0 since the shaded area above the *x*-axis equals the shaded areas below the *x*-axis. The second integral can be interpreted as one half the area of a circle with radius 5; that is, $\frac{1}{2}\pi(5)^2 = \frac{25}{2}\pi$. Thus, the value of the original integral is $0 - \frac{25}{2}\pi = -\frac{25}{2}\pi$.

49. $\int_{1}^{6} |x-2| dx$ can be interpreted as the sum of the areas of the two shaded triangles; that is,

 $\frac{1}{2}(1)(1) + \frac{1}{2}(4)(4) = \frac{1}{2} + 8 = \frac{17}{2}$.

51. $\int_{-1}^{4} \sqrt{x^2 - 4x + 4} dx$ can be interpreted as the sum of the areas of the two shaded triangles; that is,

 $\frac{1}{2}(3)(3) + \frac{1}{2}(2)(2) = \frac{9}{2} + 2 = \frac{13}{2}$.

53. $\int_{\pi}^{0} \sin^{4}\theta \, d\theta = -\int_{0}^{\pi} \sin^{4}\theta \, d\theta$ $= -\int_{0}^{\pi} \sin^{4}x \, dx$

$$=-\frac{3}{8}\pi$$

58. $\int_{-2}^{2} f(x) dx + \int_{2}^{5} f(x) dx - \int_{-2}^{-1} f(x) dx = \int_{-2}^{5} f(x) dx - \int_{-1}^{-2} f(x) dx$ [by Property 5 and reversing limits] = $\int_{-2}^{5} f(x) dx$ [Property 5]

$$= \int_{-1}^{8} f(x) dx \qquad [Property 5]$$

59. $\int_{2}^{4} f(x) dx + \int_{4}^{8} f(x) dx = \int_{2}^{8} f(x) dx, \text{ so } \int_{4}^{8} f(x) dx = \int_{2}^{8} f(x) dx - \int_{2}^{4} f(x) dx = 7.3 - 5.9 = 1.4.$

60.
$$\int_0^9 [2f(x) + 3g(x)] dx = 2\int_0^9 f(x) dx + 3\int_0^9 g(x) dx = 2(37) + 3(16) = 122$$

61. If $f(x) = \begin{cases} 3 & \text{for } x < 3 \\ x & \text{for } x \ge 3 \end{cases}$, then $\int_0^5 f(x) \, dx$ can be interpreted as the area of the shaded region, which consists of a 5-by-3 rectangle surmounted by an isosceles right triangle whose legs have length 2. Thus, $\int_0^5 f(x) \, dx = 5(3) + \frac{1}{2}(2)(2) = 17$.

62. $\int_0^3 f(x) dx$ is clearly less than -1 and has the smallest value. The slope of the tangent line of f at x = 1, f'(1), has a value between -1 and 0, so it has the next smallest value. The largest value is $\int_3^8 f(x) dx$, followed by $\int_4^8 f(x) dx$, which has a value about 1 unit less than $\int_3^8 f(x) dx$. Still positive, but with a smaller value than $\int_4^8 f(x) dx$, is $\int_0^8 f(x) dx$. Ordering these quantities form smallest to largest gives us $\int_0^3 f(x) dx < f'(1) < \int_0^8 f(x) dx < \int_4^8 f(x) dx < \int_3^8 f(x) dx$ or B < E < A < D < C.

64. (a)
$$\int_0^\varepsilon f(x) dx = \int_0^\varepsilon f(x) dx - \int_0^d f(x) dx = 10 - 7 = 3$$

(b)
$$\int_{b}^{d} f(x) dx = \int_{c}^{3} f(x) dx - \int_{b}^{c} f(x) dx - \int_{0}^{d} f(x) dx = 3 - 5 - 7 = -9$$

(c)
$$\int_{a}^{0} |f(x)| dx = \int_{a}^{b} f(x) dx - \int_{b}^{c} f(x) dx + \int_{c}^{0} f(x) dx = 15 - (-5) + 3 = 23$$

(d)
$$\left| \int_{a}^{0} f(x) dx \right| = |13| = 13$$

- (e) $\int_{-\varepsilon}^{\varepsilon} f(|x|) dx = 2 \int_{0}^{\varepsilon} f(x) dx = 6$ because f(|x|) is symmetric about the y-axis.
- (f) $\int_{-c}^{-a} f(-x) dx = 10$ because this is equivalent to reflecting the curve across the y-axis.

65.
$$I = \int_{-4}^{2} [f(x) + 2x + 5] dx = \int_{-4}^{2} f(x) dx + 2 \int_{-4}^{2} x dx + \int_{-4}^{2} 5 dx = I_1 + 2I_2 + I_3$$

 $I_1 = 3$ [area below x-axis] +3 - 3 = -3

$$I_2 = -\frac{1}{2}(4)(4)$$
 [area of triangle, see figure] $+\frac{1}{2}(2)(2) = -8 + 2 = -6$

$$I_3 = 5[2 - (-4)] = 5(6) = 30$$

Thus,
$$I = -3 + 2(-6) + 30 = 15$$

67. If $\int_{2}^{6} f(x) dx = 7$ then $\int_{2}^{6} [f(x) + 2] dx = \int_{2}^{6} f(x) dx + \int_{2}^{6} 2 dx = 7 + 2(6 - 2) = 7 + 2(4) = 15$, which is option (C).

68.
$$\int_{1}^{3} g(x) dx = \int_{1}^{2} g(x) dx + \int_{2}^{3} g(x) dx \Rightarrow \int_{1}^{2} g(x) dx = \int_{1}^{3} g(x) dx - \int_{2}^{3} g(x) dx - (-3) = 4$$
 This is option (C).

p. 456: 68-69, 72-73, 76

68. (a) Displacement =
$$\int_0^3 (3t - 5) dt$$
 = -1.5

(b) Distance traveled =
$$\int_0^3 |3t - 5| dt$$

69. (a) Displacement =
$$\int_{2}^{4} (t^2 - 2t - 3) dt$$

(b) Distance traveled =
$$\int_0^3 |t^2 - 2t - 3| dt = 4$$
 m

72.
$$s(t) = \int v(t) dt = \int 2e^{t^2/10} dt$$
; $s(5) = s(2) + \int_{2}^{5} 2e^{t^2/10} dt = 5 + 26.619 = 31.619$

73. Distance traveled =
$$\int_{1}^{4} |v(t)| dt = \int_{1}^{4} |2t - 3| dt = 6.5$$
 which is option (C).

76. Let *s* be the position of the car. We know from Equation 2 that $s(100) - s(0) = \int_0^{100} v(t) dt$. We use the Midpoint Rule for $0 \le t \le 100$ with n = 5. Note that the length of each of the five time intervals is $20 \text{ seconds} = \frac{20}{3600} \text{ hour} = \frac{1}{180} \text{ hour}$. So the distance traveled is

$$\int_0^{100} v(t) dt \approx \frac{1}{180} \left[v(10) + v(30) + v(50) + v(70) + v(90) \right] = \frac{1}{180} (38 + 58 + 51 + 53 + 47) = \frac{247}{180} \approx 1.372 \text{ miles.}$$