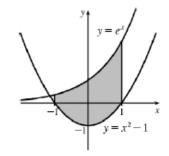
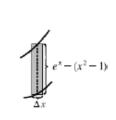
p. 487: 5-6, 9-14, 17-20, 36-39, 49-55 odd, 58, 67, 71-72

5.
$$A = \int_{x=1}^{x=8} (y_T - y_B) dx = \int_{1}^{8} (\sqrt[3]{x} - \frac{1}{x}) dx = \left[\frac{3}{4} x^{4/3} - \ln|x| \right]_{1}^{8} = \left(\frac{3}{4} \cdot 16 - \ln 8 \right) - \left(\frac{3}{4} - \ln 1 \right) = \frac{45}{4} - \ln 8$$

6.
$$A = \int_0^1 \left(e^x - xe^{x^2} \right) dx = \left[e^x - \frac{1}{2}e^{x^2} \right]_0^1 = \left(e - \frac{1}{2}e \right) - \left(1 - \frac{1}{2} \right) = \frac{1}{2}e - \frac{1}{2} = \frac{1}{2}(e - 1)$$

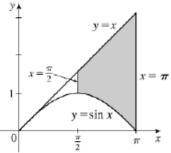
9.
$$A = \int_{-1}^{1} (e^{x} - (x^{2} - 1)) dx$$
$$= \left[e^{x} - \frac{1}{3}x^{3} + x \right]_{-1}^{1} = (e - \frac{1}{3} + 1) - (e^{-1} + \frac{1}{3} - 1)$$
$$= e - \frac{1}{6} + \frac{4}{3}$$

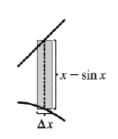


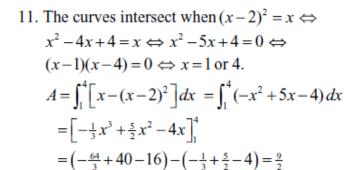


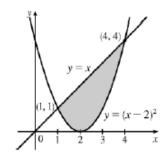
10.
$$A = \int_{\pi/2}^{\pi} (x - \sin x) dx = \left[\frac{x^2}{2} + \cos x \right]_{\pi/2}^{\pi}$$

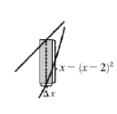
= $\left(\frac{\pi^2}{2} - 1 \right) - \left(\frac{\pi^2}{8} + 0 \right) = \frac{3\pi^2}{8} - 1$

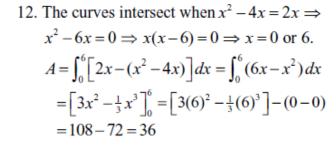


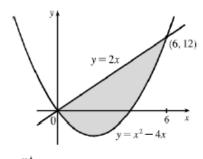


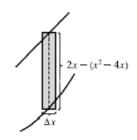


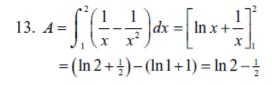


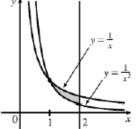


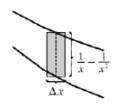


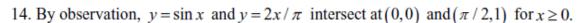




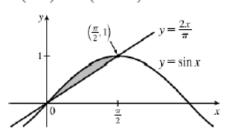








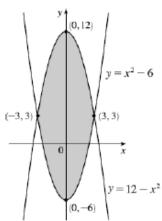
$$A = \int_0^{\pi/2} \left(\sin x - \frac{2x}{\pi} \right) dx = \left[-\cos x - \frac{1}{\pi} x^2 \right]_0^{\pi/2}$$
$$= \left(0 - \frac{\pi}{4} \right) - (-1) = 1 - \frac{\pi}{4}$$



17.
$$12 - x^2 = x^2 - 6 \Leftrightarrow 2x^2 = 18 \Leftrightarrow$$

$$x^2 = 9 \Leftrightarrow x = \pm 3$$
, so

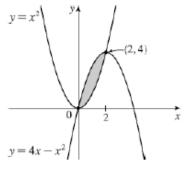
$$A = \int_{-3}^{3} \left[(12 - x^2) - (x^2 - 6) \right] dx = 2 \int_{0}^{3} (18 - 2x^2) dx$$
 [by symmetry]
= $2 \left[18x - \frac{2}{3}x^3 \right]_{0}^{3} = 2 \left[(54 - 18) - 0 \right] = 2(36) = 72$



18.
$$x^2 = 4x - x^2 \Leftrightarrow 2x^2 - 4x = 0 \Leftrightarrow$$

 $2x(x-2) = 0 \Leftrightarrow x = 0 \text{ or } 2, \text{ so}$

$$A = \int_0^2 \left[(4x - x^2) - x^2 \right] dx = \int_0^2 (4x - 2x^2) dx$$
$$= \left[2x^2 - \frac{2}{3}x^3 \right]_0^2 = 8 - \frac{16}{3} = \frac{8}{3}$$

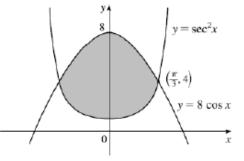


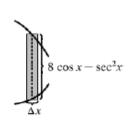
19. The curves intersect when
$$8\cos x = \sec^2 x \implies 8\cos^3 x = 1 \implies \cos^3 x = \frac{1}{8} \implies \cos x = \frac{1}{2} \implies x = \frac{\pi}{3}$$
 for

 $0 < x < \frac{\pi}{2}$. By symmetry,

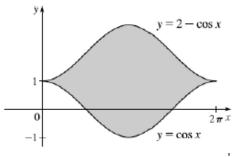
$$A = 2 \int_0^{\pi/3} (8\cos x - \sec^2 x) \, dx$$

= $2 \left[8\sin x - \tan x \right]_0^{\pi/3} = 2 \left(8 \cdot \frac{\sqrt{3}}{2} - \sqrt{3} \right)$
= $2 \left(3\sqrt{3} \right) = 6\sqrt{3}$





20.
$$A = \int_0^{2\pi} [(2 - \cos x) - \cos x] dx$$
$$= \int_0^{2\pi} (2 - 2\cos x) dx$$
$$= [2x - 2\sin x]_0^{2\pi}$$
$$= (4\pi - 0) - 0 = 4\pi$$

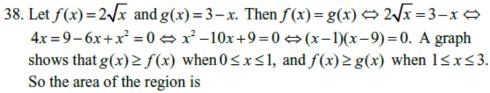


36. Setting
$$f(x) = g(x)$$
, we find that the curves intersect at $x = -2$ and $x = 3/2$. In the interval $[-2, 3/2]$, $f(x) \ge g(x)$, so the region bounded by the graphs of $f(x)$ and $g(x)$ is

$$\int_{-2}^{3/2} (f(x) - g(x)) dx = \int_{-2}^{3/2} (-2x^2 - x + 6) dx = \int_{-2}^{3/2} (6 - x - 2x^2) dx, \text{ option } (\mathbf{B}).$$

37. Let
$$f(x) = 9 - x^2$$
 and $g(x) = x - 7$. Then $f(x) = g(x) \Leftrightarrow 9 - x^2 = x - 7 \Leftrightarrow x^2 + x - 16 = 0 \Leftrightarrow x = \frac{-1 \pm \sqrt{1^2 + 64}}{2} = \frac{-1 \pm \sqrt{65}}{2}$. Let $a = \frac{-1 - \sqrt{65}}{2}$ and $b = \frac{-1 + \sqrt{65}}{2}$. In the interval (a,b) , $f(x) \ge g(x)$, so the area of the region bounded by the graphs of $f(x)$ and $g(x)$ is

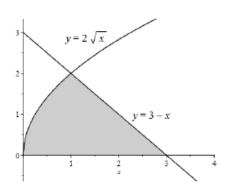
$$A = \int_{a}^{b} (-x^{2} - x + 16) dx = \int_{b}^{a} (x^{2} + x - 16) dx = \left[\frac{1}{3}x^{3} + \frac{1}{2}x^{2} - 16x \right]_{b}^{a}$$
$$= \left(\frac{1}{3}a^{3} + \frac{1}{2}a^{2} - 16a \right) - \left(\frac{1}{3}b^{3} + \frac{1}{2}b^{2} - 16b \right) = \frac{65}{6}\sqrt{65}, \text{ which is choice } (\mathbf{D}).$$



$$A = \int_0^1 \left(3 - x - 2\sqrt{x}\right) dx + \int_1^3 2\sqrt{x} - (3 - x) dx$$

$$= \left[3x - \frac{1}{2}x^2 - \frac{4}{3}x^{3/2}\right]_0^1 + \left[\frac{4}{3}x^{3/2} - 3x + \frac{1}{2}x^2\right]_1^3$$

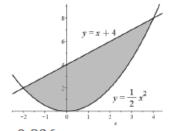
$$= \left(1 - \frac{1}{2} - \frac{4}{3}\right) - 0 + \left(\frac{4}{3}\sqrt{9} - 9 + \frac{9}{2}\right) - \left(\frac{4}{3} - 1 + \frac{1}{2}\right) = 20\sqrt{15} + \frac{9}{2}$$



39. The curves intersect at x = -2 and x = 4. The area of the region bounded by the curves is

$$A = \int_{-2}^{4} \left(x + 4 - \frac{1}{2} x^2 \right) dx = \left[4x + \frac{1}{2} x^2 - \frac{1}{6} x^3 \right]_{-2}^{4}$$

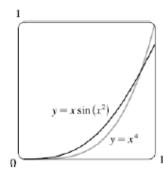
= $\left(16 + 8 - \frac{32}{3} \right) - \left(-8 + 2 - \left(-\frac{4}{3} \right) \right) = 18$, which is option (**B**).



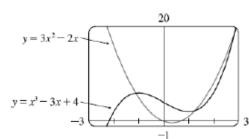
49. From the graph, we see that the curves intersect at x = 0 and $x = a \approx 0.896$, with $x \sin(x^2) > x^4$ on (0, a). So the area A of the region bounded by the

curves is
$$A = \int_0^a \left[x \sin(x^2) - x^4 \right] dx = \left[-\frac{1}{2} \cos(x^2) - \frac{1}{5} x^5 \right]_0^a$$

= $-\frac{1}{2} \cos(a^2) - \frac{1}{5} a^5 + \frac{1}{2} \approx 0.037$.



51. From the graph, we see that the curves intersect at $x = a \approx -1.114908$, $x = b \approx 1.2541012$, and $x = c \approx 2.860806$, with $x^3 - 3x + 4 > 3x^2 - 2x$ on (a,b) and $3x^2 - 2x > x^3 - 3x + 4$ on (b,c). So the area of the region bounded by the curves is

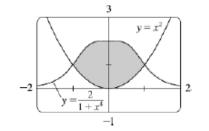


$$A = \int_{a}^{b} \left[(x^{3} - 3x + 4) - (3x^{2} - 2x) \right] dx + \int_{b}^{c} \left[(3x^{2} - 2x) - (x^{3} - 3x + 4) \right] dx$$

$$= \int_{a}^{b} (x^{3} - 3x^{2} - x + 4) dx + \int_{b}^{c} (-x^{3} + 3x^{2} + x - 4) dx$$

$$= \left[\frac{1}{4} x^{4} - x^{3} - \frac{1}{2} x^{2} + 4x \right]_{a}^{b} + \left[-\frac{1}{4} x^{4} + x^{3} + \frac{1}{2} x^{2} - 4x \right]_{b}^{c} \approx 8.378.$$

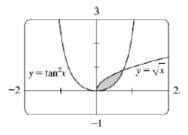
53. Using technology, we can see that the curves intersect at (-1,1) and (1,1). On the interval (-1,1), $\frac{2}{1+x^4} > x^2$ so the area of the region is



$$A = \int_{-1}^{1} \left(\frac{2}{1+x^4} - x^2 \right) dx \approx 2.80123$$

55. The curves intersect at x = 0 and $x = a \approx 0.749363$.

$$A = \int_0^a (\sqrt{x} - \tan^2 x) dx \approx 0.25142$$

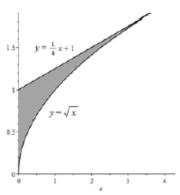


58. (a) $f(x) = \sqrt{x} \Rightarrow f'(x) = \frac{1}{2\sqrt{x}} \Rightarrow f'(4) = \frac{1}{2\sqrt{4}} = \frac{1}{4}$, so the slope of the

tangent line at the point (4,2) is $\frac{1}{4}$ and the equation of the tangent line is $y = \frac{1}{4}(x-4) + 2$, or $y = \frac{1}{4}x + 1$.

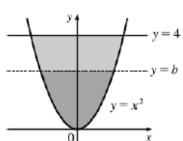
(b) The area of the region bounded by the graph of f, the y-axis and the tangent line is

$$A = \int_0^4 \left(\frac{1}{4}x + 1 - \sqrt{x}\right) dx = \left[\frac{1}{8}x^2 + x - \frac{2}{3}x^{3/2}\right]_0^4 = \left(2 + 4 - \frac{2}{3} \cdot 8\right) - 0 = \frac{2}{3}$$



- 67. We know that the area under curve A between t = 0 and t = x is $\int_0^x v_A(t) dt = s_A(x)$, where $v_A(t)$ is the velocity of car A and s_A is its displacement. Similarly, the area under curve B between t = 0 and t = x is $\int_0^x v_B(t) dt = s_B(x)$.
 - (a) After one minute, the area under curve A is greater than the area under curve B. So car A is ahead after one minute.
 - (b) The area of the shaded region has numerical value $s_A(1) s_B(1)$, which is the distance by which car A is ahead of car B after 1 minute.
 - (c) After two minutes, car B is traveling faster than car A and has gained some ground, but the area under curve A from t = 0 to t = 2 is still greater than the corresponding area for curve B, so car A is still ahead.
 - (d) From the graph, it appears that the area between curves A and B for $0 \le t \le 1$ (when car A is going faster), which corresponds to the distance by which car A is ahead, seems to be about 3 squares. Therefore, the cars will be side by side at the time x where the area between the curves for $1 \le t \le x$ (when car B is going faster) is the same as the area for $0 \le t \le 1$. From the graph, it appears that this time is $x \approx 2.2$. So the cars are side by side when $t \approx 2.2$ minutes.
- 71. By the symmetry of the problem, we consider only the first quadrant where $y = x^2 \implies x = \sqrt{y}$. We are looking for a number *b* such that $\int_{0}^{b} \int_{0}^{a} dx = \int_{0}^{4} \int_{0}^{a} dx \implies 2 e^{3/2} \int_{0}^{b} e^{2(x-3)/2} \int_{0}^{4} e^{2(x-3)/2} \int_$

$$\int_{0}^{b} \sqrt{y} \, dy = \int_{b}^{4} \sqrt{y} \, dy \implies \frac{2}{3} y^{3/2} \Big]_{0}^{b} = \frac{2}{3} y^{3/2} \Big]_{b}^{4} \implies b^{3/2} = 4^{3/2} - b^{3/2}$$
$$\implies 2b^{3/2} = 8 \implies b^{3/2} = 4 \implies b = 4^{3/2} \approx 2.5198.$$



72. (a) We want to choose a so that $\int_{1}^{a} \frac{1}{x^{2}} dx = \int_{a}^{4} \frac{1}{x^{2}} dx \Rightarrow$

$$\left[\frac{-1}{x}\right]_{1}^{a} = \left[\frac{-1}{x}\right]_{1}^{4} \Rightarrow -\frac{1}{a} + 1 = -\frac{1}{4} + \frac{1}{a} \Rightarrow \frac{5}{4} = \frac{2}{a} \Rightarrow a = \frac{8}{5}.$$

(b) The area under the curve $y = 1/x^2$ from x = 1 to x = 4 is $\frac{3}{4}$ [take in the first integral in part (a)].

Now the line y = b must intersect the curve $x = 1/\sqrt{y}$ and not the line $y = 1/4^2$ since the area under the line from x = 1 to x = 4 is only $\frac{3}{16}$ which is less than half of $\frac{3}{4}$. We want to choose b so that the

upper area in the diagram is half of the total area under the curve $y = 1/x^2$ from x = 1 to x = 4. This without changing the graphs, and if c = 0 the curves do not enclose a region. We see from the graph that the enclosed area A lies between x = -c and x = c, and by symmetry, it is equal to four times the area in the first quadrant. The enclosed area is

$$A = 4\int^{c} (c^{2} - x^{2}) dx = 4\int^{c} c^{2}x - \frac{1}{2}x^{3}\int^{c} = 4(c^{3} - \frac{1}{2}c^{3}) = 4(\frac{2}{2}c^{3}) = \frac{8}{2}c^{3}.$$