Higher Order Derivatives
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If £(x) =2x" —3x” then using the limit definition we find
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Then using the limit definition again,
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If f(x)=x, then f'(x)=3x",and f"(x)=6x,and f"(x) =6, which is a constant function so
™ {(x) = 0which is option (D).

Call the curve with the positive y-intercept g and the other curve h. Notice that g has a maximum
(horizontal tangent) at x = 0, but & # 0. so / cannot be the derivative of g. Also notice that where g is
positive, h is increasing. Thus & =fand g = /".Now f'(—1) is negative since /" is below the x-axis
there and f"(1)is positive since fis concave upward at x = 1. Therefore, /"(1)is greater than f'(—1).
Call the curve with the smallest positive x-intercept g and the other curve h. Notice that where g is
positive in the first quadrant, 4 is increasing. Thus h =fand g = f".Now f'(—1) is positive since f" is
above the x-axis there and /"(1)appears to be zero since f has an inflection point at x = 1. Therefore,
f'(1) is greater than £"(—1).

a=f,b=f",c=f". We can see this because where a has a horizontal tangent, b = 0, and where b
has a horizontal tangent, ¢ = 0. We can immediately see that ¢ can be neither f nor /" since at the
points where ¢ has a horizontal tangent, neither a nor b is equal to 0.

We can see immediately that a is the graph of the acceleration function, since at the points where a
has a horizontal tangent, neither ¢ nor b is equal to 0. Next, we note that a = 0 at the point where b
has a horizontal tangent, so b must be the graph of the velocity function, and hence b’ =a. We
conclude that ¢ is the graph of the position function.
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We see from the graph that our answers are reasonable because the
graph of /' is that of a linear function and the graph of /" is that of a

constant function.
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We see from the graph that our answers are reasonable because the
graph of /" is that of an even function (fis an odd function) and the

graph of /" is that of an odd function. Furthermore, /" =0 when f
has a horizontal tangent and /" =0 when /" has a horizontal tangent.



