MVT, IVT, EVT

For problems 1-8, determine if the Mean Value Theorem applies to the function on the given
interval. Ifit does, find the ¢-value. If it doesn’t, explain why not.
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For problems 9-13, determine if the Intermediate Value Theorem would guaraniee a ¢ -value on
the given interval.
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Not continuous at x = 1, so IVT does not apply
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For problems 14-16, find the ¢ -values for the given problem.
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For Problems 17-21, use the table below with selected values of the twice differentiable
function k. Reach each explanation and decide whether you would apply IVT, EVT, or MVT.

1 2 3 4 5 6 7

X
k(x) 5 2 -4 -1 3 2 0

17. Since k is differentiable, it is also continuous. Since k(6)=2 and k(7) =0, and since 1 is
between 2 and 0, it follows by — V/ T that k(c)=1 for some ¢between 6 and 7.

Ok,
- 3—-2
follows by MV that k'(c)=—6 for some ¢ in the interval (2,3).

18. Since k is differentiable and, therefore, also continuous, and since

19. There must be a minimum value for & at some r in [1,7], because k is differentiable and,

therefore, also continuous. Hencethe =V applies.

20. There must be some value a in (2,6) for which k'(a) =0, because k(2)= k(ﬁ), and since
k is differentiable, the /1Y | applies.

21. Since k is differentiable, the /Y | guarantees some a in (4,5) for which '(a) =4
and also some b in (5,6) for which k'(b) =—1. Then since k' is differentiable, and
therefore also continuous, it follows by the - T applied to k' that k'(c)=0 for

some ¢ in (a,b) and therefore in (4,6).



