
A power series is an infinite degree polynomial.
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We can generalize by centering the power series at 𝑥 = 𝑐.
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Power Series



෍

𝑛=0

∞
𝑥𝑛

𝑛!
= 1 + 𝑥 +

1

2
𝑥2 +

1

6
𝑥3 +

1

24
𝑥4 +⋯

෍

𝑛=0

∞

−1 𝑛 𝑥 + 1 𝑛 = 1 − 𝑥 + 1 + 𝑥 + 1 2 − 𝑥 + 1 3 +⋯

෍

𝑛=0

∞
𝑥 − 2 𝑛

𝑛
= 𝑥 − 2 +

1

2
𝑥 − 2 2 +

1

3
𝑥 − 2 3 +⋯

These are functions of 𝑥.

There may be no simpler way to express these functions.



A power series is convergent at a value of 𝑥 if the 

infinite sum converges to a finite number when 

evaluated at 𝑥.

The interval of convergence is the interval of 𝑥 

values that make the series converge.  The radius of 

convergence is the distance away from 𝑥 = 𝑐 that 

we can go to get convergence.

Special Cases

Radius = ∞ → Interval = all reals

Radius = 0 → Interval = just the point 𝑐



Ex. Find the radius of convergence for ෍
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Ex. Find the radius of convergence for ෍
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Ex. Find the interval of convergence and radius of convergence for
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Does this series look like something we know?

Ex. Find the interval of convergence and radius of convergence for
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T-shirt design ideas are due next class.
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