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By the Ratio Test, the series Z \/_ converges when|x| <l,s0 R=1.
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When x =1, the series Z( b converges by the Alternating Series Test. When x = 1, the series 23_
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diverges because it is a p-series( p = L <1). Thus, the interval of convergence is / =(-1,1].
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1* | | | | . By the Ratio Test, the senesz Y — converges when| |c:1 < |a| <4, sor=4.
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When x = 4, the series ZL converges since it is a p-series(p =4 >1). When x = -4, the series
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converges by the Alternating Series Test. Thus, the interval of convergence is [ = [—4, 4].
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|E| <1 ¢ [x] <2, so R=2.When x =2, the series Z diverges by the Limit Comparison Test
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withh = l When x = -2, the series Z ()’ Iy converges by the Alternating Series Test. Thus, the
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interval of convergence is / = [—2: 2).

n n+l n 2 2
25.1If a, = (x+2) , then lim |22 = lim | (;Hz} 2'Inn |— im o |I+ |= -+ |becau5e
2%Inn nsx | g | o= 127 n(n+1) [x+2}”| == In(n+1) 2 2
by I"Hopital’s Rule, lim — 2" — fim 0% _ jimy 1/ =|imﬂ=1im{1+,lg;;.=1. By the
== In(n+1) === In(x+1) == 1/(x+1) == x  n=

on L 2
Ratio Test, the series Z% converges when ? <l ©x+2<2 e -2<x+2<1&
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—4 <x<0,and R =2. When x =—4,the series z (l_]) converges by the Alternating Series Test.
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When x =0, the series Z -1 diverges by the Limit Comparison Test withp = 1 (or by comparison
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with the harmonic series). Thus, the interval of convergence is/ =
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the Ratio Test, the series > a, =n!(2x—1)" converges only ﬁ:-r|21—1| =l x=1< x=1.
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Therefore, the radius of convergence is R =0, and the interval of convergence is = {l}

The correct choice is (D): Series Il and Il do not have radii of convergence R =o0. Using the Ratio
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Test for Divergence. Thus, the correct choice is (C).
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series converges when <l& |x - a| < k. This is choice (A).
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Because the series converges at x =7 and diverges at x =10,we know 2 < R, but R <5. Therefore the
series must converge for all |x— 5| < 2 and must diverge for all |x—5|> 5. Therefore, we can only be
sure that statement (B), the series converges at x =4, is true.
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are (A) -3<x<-1.
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By the Ratio test, the series Z( D™ (x-2)

converges for [x—2|<1 < 1<x<3. Whenx=1, the
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series is divergent by Integral Test. When x = 3, the series Z( l) is convergent by the Alternating
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Series Test. Therefore x = 31s in the interval of convergence of the power series. This is choice

(C).



